268 research outputs found

    Neutron diffraction evidence of microscopic charge inhomogeneities in the CuO2 plane of superconducting La2-xSrxCuO4 (0 < x <0.30)

    Full text link
    We present local structural evidence supporting the presence of charge inhomogeneities in the CuO2 planes of underdoped La2-xSrxCuO4. High-resolution atomic pair distribution functions have been obtained from neutron powder diffraction data over the range of doping 0 < x < 0.30 at 10 K. Despite the average structure getting less orthorhombic we see a broadening of the in-plane Cu-O bond distribution as a function of doping up to optimal doping. Thereafter the peak abruptly sharpens. Complementary evidence is also evident from the observation of octahedral tilt disorder in the PDF at higher atomic separation. This suggests a crossover from a charge inhomogeneous state at and below optimal doping to a homogeneous charge state above optimal doping. The strong response of the local structure to the charge-state implies a strong electron-lattice coupling in these materials.Comment: 4 pages, 3 figures, submitted to Physical Review Letters (27-th of June 1999) resubmitted to Phys. Rev. Lett. (8th of March 2000

    Real-space investigation of short-range magnetic correlations in fluoride pyrochlores NaCaCo2_2F7_7 and NaSrCo2_2F7_7 with magnetic pair distribution function analysis

    Full text link
    We present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo2_2F7_7 and NaSrCo2_2F7_7, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 \AA, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. This model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space

    Measurement of the local Jahn-Teller distortion in LaMnO_3.006

    Full text link
    The atomic pair distribution function (PDF) of stoichiometric LaMnO_3 has been measured. This has been fit with a structural model to extract the local Jahn-Teller distortion for an ideal Mn(3+)O_6 octahedron. These results are compared to Rietveld refinements of the same data which give the average structure. Since the local structure is being measured in the PDF there is no assumption of long-range orbital order and the real, local, Jahn-Teller distortion is measured directly. We find good agreement both with published crystallographic results and our own Rietveld refinements suggesting that in an accurately stoichiometric material there is long range orbital order as expected. The local Jahn-Teller distortion has 2 short, 2 medium and 2 long bonds.Comment: 5 pages, 3 postscript figures, minor change

    Soft phonons and structural phase transitions in La1.875_{1.875}Ba0.125_{0.125}CuO4_{4}

    Full text link
    Soft phonon behavior associated with a structural phase transition from the low-temperature-orthorhombic (LTO) phase (BmabBmab symmetry) to the low-temperature-tetragonal (LTT) phase (P42/ncmP4_{2}/ncm symmetry) was investigated in La1.875_{1.875}Ba0.125_{0.125}CuO4_{4} using neutron scattering. As temperature decreases, the TO-mode at ZZ-point softens and approaches to zero energy around Td2=62T_{\rm d2}=62 K, where the LTO -- LTT transition occurs. Below Td2T_{\rm d2}, the phonon hardens quite rapidly and it's energy almost saturates below 50 K. At Td2T_{\rm d2}, the energy dispersion of the soft phonon along in-plane direction significantly changes while the dispersion along out-of-plane direction is almost temperature independent. Coexistence between the LTO phase and the LTT phase, seen in both the soft phonon spectra and the peak profiles of Bragg reflection, is discussed in context of the order of structural phase transitions.Comment: 6 pages, 8 figure
    • …
    corecore